DEFFENSE de la Géométrie de l'Infini ,
contre les Objections de M. le Gendre de
Saint Aubin.
C
E n'est pas d'aujourd'hui qu'on attaque
la Géométrie ; et l'on ne doit
pas croire que ce soit l'Infini qu'elle a
tout-à-fait embrassé dans ces derniers
siécles , qui l'ait rendue l'objet de ces attaques.
Les définitions mêmes d'Euclide
ont trouvé des contradictions dans les
siécles les plus reculez. Les Sceptiques ,
B iiij pour
16 MERCURE DE FRANCE
pour le moins , se sont joüez de l'évidence
, comme ils se jouoient de la clarté
même du jour.
On peut dire cependant que le gros du
public , sçavant , et même ignorant , a
toujours regardé la Géométrie comme
une science respectable sur la certitude ,
et sur la verités et loin qu'en dernier lieu
ce Public se soit défié de l'Infini qu'on
introduisoit dans cette science ; l'admiration
s'est jointe au respect , malgré la prorestation
des Geometres mêmes , peu
que
instruits , ont cru devoir faire contre
cette prétendue innovation.
Il faut l'avouer aussi : La Géométrie de
l'Infini , par là même qu'elle manie l'Infini
, est pleine , comme ledit fort bien
M. le Gendre , de conclusions vastes , de
veritez hardies , et paradoxes , de points
de vûë extrémement difficiles et escarpez
, qui paroissent même sortir du Géométrique
, et embrasser les sciences les
plus éloignées ; mais ce sçavant Auteur
a tort de vouloir retrouver icy les contradictions
qu'il a fort bien relevées dans
la plupart des Opinions Philosophiques
dont il a fait la matiere de l'Ouvrage
, qui porte ce titre De l'Opinion. Et
quand même il trouveroit quelques conclusions
hazardées , et plus Philosophiques
JANVIER : 1734. 17
ques que Mathématiques dans les Ouvrages
des Géometres modernes , comme
on en a trouvé , sans doute , dans les anciens
, il ne seroit jamais assez autorisé
par là à proscrire toute la Géometrie , ni
même toute la Géométrie moderne , comme
il le fait trop universellement dans
sa réponse du Mercure de Novembre.
Je dis toute la Géometrie en général s
car il est vrai que M.le Gendre sappe tout
en sappant cette premiere notion d'Euclide
, que le point est ce qui n'a point de
parties ; la ligne , ce qui n'a point de largeur
, &c. Notion qui ne semble rien ,
mais qui est pourtant
le fondement
unique
sur lequel toute la précision
, nonseulement
de la Géométrie
transcendante
,
mais de toute sorte de Géométrie
, est absolument
établie.
-
Car rien n'est plus lié , plus systématique
que la Géométrie , et la Transcendante
s'enchaine tres immédiatement
avec la plus simple, et en particulier avec
ces premieres Notions ; ce qui est si vrai
qu'on a remarqué que les plus hautes
spéculations de la nouvelle Géométrie
étoient communément établies sur les
propositions les plus simples des Elemens
d'Euclide ; témoin , par exemple , cette
admirable méthode de la transformation
Bv des
18 MERCURE DE FRANCE
des courbes qui dérive immédiatement
de l'égalité des Rectangles , qui ont leurs
côtez réciproquement proportionnels , et
bien d'autres pareilles dont on voit les
exemples chez les Géometres Anglois , et
en particulier , chez le célébre Neuton.
Une preuve encore de ce que je dis,
c'est qu'il est tres- singulier que tous ceux
qui , de même que M. le Gendre , ont attaqué
la Géométrie de l'Infini , ont tous
attaqué les Notions d'Euclide , sur le
point, la ligne, la surface ; comme si l'on
ne pouvoit secoüer le Faîte de l'Edifice
sans en ébranler les fondemens ; telle est
la correspondance et la liaison systématique
de cette admirable science.
Deux sortes de Sçavans parlent de Surfaces
, de Lignes , de Points ; les Philosophes
et les Géométres. Les Premiers
disputent s'il y a des Points et des Lignes.
proprement dites dans la nature ; et leur
dispute ayant mille et mille fois recommencé
, n'a pas encore fini une fois ;
les Géometres n'en disent qu'un mot , en
commençant ; et ce mot est celui d'Euclide
; le Point n'a aucune partie ; la Ligne
n'a point de largeur; la Surface,point
de profondeur ; cela une fois dit, ils vont
en avant , parce qu'ils sont tous d'accord
.
Et
JANVIER. 1734. 19
Et où vont - ils ? A un systême de véritez
merveilleuses qui se réalisent dans
la pratique de tous les Arts ; à mesurer la
Terre et les Cieux ; à prédire , à point
nommé , les Eclipses , à débrouiller, la
Chronologie et l'Histoire, à regler le Calandrier
, à naviger aux extrémitez des
Mers , à arpenter , à toiser , à fortifier
des Villes , à faire des Horloges , des Lunettes
, des Microscopes , des Machines
de toutes les sortes.
Et ce n'est pas là encore llee plus haut
point où ils arrivent : La Géométrie de
Î'Infini , au jugement de l'esprit , est encore
plus sublime et plus merveilleuse
que tout cela; mais pendant que les Géometres
s'élevent ainsi , les Philosophes
sont encore à disputer s'il y a des Points,
des Lignes et des Surfaces , et à chicaner
Euclide , la Géométrie et les Géomêtres.
Je demande de quel côté on oroit que se
trouve la verité , la réalité , ou la simple
abstraction de l'entendement , pour ne pas
dire l'illusion de l'esprit et la pure chimere.
Et voilà tout ce que j'avois à répondre
au Sçavant Aggresseur de la Géométrie
et des Géometres , auquel on peut
assurer que la Géométrie transcendante
seule offre autant de véritez incontestables
à recueillir pour l'honneur du genre humain
B vj
20 MERCURE DE FRANCE
main qu'il a pû recueillir d'opinions erronées
, pour constater les égaremens de
la Philosophie : ce seroit un second Ouvrage
digne de M. Saint-Aubin.